
CEWES MSRC/PET TR/99-06

PAPI:  Portable Interface to Hardware Performance Counters

by

Shirley Browne
George Ho
Phil Mucci

04h00499



Work funded by the DoD High Performance Computing
Modernization Program CEWES
Major Shared Resource Center through

Programming Environment andTraining (PET)

Supported by Contract Number:  DAHC94-96-C0002
Nichols Research Corporation

Views, opinions and/or findings contained in this report are those of the author(s) and should not be con-
strued as an official Department of Defense Position, policy, or decision unless so designated by other
official documentation.



PAPI: Portable Interface to 
Hardware Performance Counters 

Shirley Browne
George Ho
Phil Mucci

University of Tennessee
Innovative Computing Laboratory 

Overview

The purpose of the PAPI project is to specify a standard application programming interface (API) for
accessing hardware performance counters available on most modern microprocessors. These counters
exist as a small set of registers that count Events, occurrences of specific signals related to the
processor’s function. Monitoring these events facilitates correlation between the structure of
source/object code and the efficiency of the mapping of that code to the underlying architecture. This
correlation has a variety of uses in performance analysis including hand tuning, compiler optimization,
debugging, benchmarking, monitoring and performance modeling. In addition, it is hoped that this
information will prove useful in the development of new compilation technology as well as in steering
architectural development towards alleviating commonly occurring bottlenecks in high performance
computing. 

Description

The PAPI provides two interfaces to the underlying counter hardware; a simple, high level interface for
the acquisition of simple measurements and a fully programmable, low level interface directed towards
users with more sophisticated needs. The low level PAPI deals with hardware events in  groups called
EventSets. EventSets can reflect how the counters are most frequently used, such as taking simultaneous
measurements of different hardware events and relating them to one another. For example, relating
cycles to memory references or flops to level 1 cache misses can help detect poor locality and memory
management. In addition, EventSets allow a highly efficient implementation which translates to more
detailed and accurate measurements. EventSets are fully programmable and have features such as
guaranteed thread safety, writing of counter values, multiplexing and notification on threshold crossing,
as well as processor-specific features. The high level interface simply provides the ability to start, stop
and read the counters for a specified list of events. 

PAPI provides portability across different platforms. It uses the same routines with similar argument
lists to control and access the counters for every architecture. As part of PAPI, we have predefined a set
of events that we feel represents the lowest common denominator of every good counter
implementation. Our intent is that the same source code will count similar and possibly comparable
events when run on different platforms.  If the programmer chooses to use this set of standardized
events, then the source code need not be changed and only a fresh compilation and link is necessary.
However, should the developer wish to access machine-specific events, the low level API provides
access to all available events and counting modes. If an event or feature does not exist on the current
platform, PAPI returns an appropriate error code. This significantly reduces the porting effort of code



using the PAPI because the form of each call to PAPI remains the same, just the argument lists need
updating in the case of machine-specific events. In addition to the standard set, each PAPI supports all
native events through the ability to directly accept platform specific counter numbers. Definitions for
most, if not all of these, are included as conditional macros in the PAPI header file. In this way, PAPI
avoids the necessity for inefficient code to translate all events for all platforms into a uniform
representation and back again. This translation is only done for the relatively few events defined in the
standardized set. 

Some processors like those in the Cray Vector and the IBM POWER  series have counter groups. They
enable access to specific groups of counters, instead of individual events. This presents a serious
portability problem, thus PAPI abstracts hardware counters from their groups with a packed naming
scheme. Each counter control value or event is made up of the counter group number and the number of
the specific counter in that group. 

PAPI reference implementation can be divided into two layers of software. The upper layer consists of
the API and machine independent support functions. The lower layer defines and exports a machine
independent interface to machine dependent functions and data structures. These functions access the
substrate, which may consist of the operating system, a kernel extension or assembly functions to
directly access the processor’s registers. The PAPI reference implementation tries to use the most
efficient and flexible of the three, depending on what is available. Naturally, the functionality of the
upper layers heavily depends on that provided by the substrate. In cases where the substrates do not
provide highly desirable features, PAPI attempts to emulate them as described below. However, one
particular difficulty PAPI cannot solve is the issue of thread/processor affinity. Event though the API is
thread safe, it cannot guarantee that the same processor runs the same thread on every context switch.
Thus for implementations of PAPI without per thread counter functionality in the kernel, some
anomalies may result. This rarely happens in practice, as operating system schedulers give preference to
the previous processor in order to minimize cache thrashing and bus traffic. 

The PerfAPI  has the capability to internally multiplex hardware events if the operating system or
counter interface does not support it. This functionality presents the developer with the view that all
events are countable all the time. Naturally, the multiplexing of counter events incurs a small amount of
overhead and can adversely affect the accuracy of reported counter values. Nevertheless, similar features
have proved quite successful in commercial implementations of counter software found in SGI’s IRIX
6.x and DEC’s Digital Unix v4.x. Multiplexing has been shown to be especially useful in the
performance tuning process as a means of looking for outstanding bottlenecks when first analyzing an
unfamiliar code. When multiplexing is enabled and subsequently activated through the request of a
conflicting event, the user is informed through a specific success code. In this way, the user is cautioned
in deriving any performance data that may not be entirely accurate. 

PAPI guards against overflow of counter values. Each counter can potentially be incremented multiple
times in a single clock cycle. This combined with increasing clock speeds and the small precision of
some of the physical counters means that overflow is likely to occur on platforms where 64-bit counters
are not supported in hardware or by the operating system. In those cases, PAPI implementations are
required to implement 64-bit counters in software. PAPI also provides for asynchronous notification
when counters exceed some user specified value. Doing so allows the generation of a histogram of the
frequency of overflows for a region of code. This functionality provides the basis for all source level
performance analysis software, from the antiquated days of AT & T’s  prof  to SGI’s SpeedShop. Thus
for any architecture with even the most rudimentary access to hardware performance counters, PAPI



provides the foundation for truly portable, source level, performance analysis tools based on real
processor statistics. 
  

Standardized Event Definitions

The following is a table of hardware events deemed relevant and useful in tuning application
performance. These events have identical assignments in the header files on different platforms however
they may differ in their actual semantics. In addition, all of these events are not guaranteed to be
present on all platforms. Please check your platform’s documentation carefully. 

  

Value Symbol Description
0x80010000 PAPI_L1_DCM Level 1 data cache misses
0x80010001 PAPI_L1_ICM Level 1 instruction cache misses
0x80010002 PAPI_L2_DCM Level 2 data cache misses
0x80010003 PAPI_L2_ICM Level 2 instruction cache misses
0x80010004 PAPI_L3_DCM Level 3 data cache misses
0x80010005 PAPI_L3_ICM Level 3 instruction cache misses
0x80011000 PAPI_CA_SHR Request for access to shared cache line (SMP)
0x80011001 PAPI_CA_CLN Request for access to clean cache line (SMP)
0x80011002 PAPI_CA_INV Cache line invalidation (SMP)
0x80020000 PAPI_TLB_DM Data translation lookaside buffer misses
0x80020001 PAPI_TLB_IM Instruction translation lookaside buffer misses
0x80021000 PAPI_TLB_SD Translation lookaside buffer shootdowns (SMP)
0x80030000 PAPI_BRI_MSP Branch instructions mispredicted
0x80030001 PAPI_BRI_TKN Branch instructions taken
0x80030002 PAPI_BRI_NTK Branch instructions not taken
0x80100000 PAPI_TOT_INS Total instructions executed
0x80100001 PAPI_INT_INS Integer instructions executed
0x80100002 PAPI_FP_INS Floating point instructions executed
0x80100003 PAPI_LD_INS Load instructions executed 
0x80100004 PAPI_SR_INS Store instructions executed 
0x80100005 PAPI_CND_INS Branch instructions executed

0x80100006 PAPI_VEC_INS Vector/SIMD instructions executed
0x80100007 PAPI_FLOPS Floating Point Instructions executed per second
0x80200000 PAPI_TOT_CYCTotal cycles
0x80200001 PAPI_MIPS Millions of instructions executed per second

 



Return Codes

All of the functions contained in the PerfAPI  return standardized error codes. Values greater than or
equal to zero indicate success, less than zero indicates failure. 
  

Value Symbol Definition
1 PAPI_OK_MPX No error, multiplexing has been enabled and is now active
0 PAPI_OK No error
-1 PAPI_EINVAL Invalid argument
-2 PAPI_ENOMEM Insufficient memory
-3 PAPI_ESYS A System or C library call failed, please check errno

-4 PAPI_ESBSTR Substrate returned an error, usually the result of an unimplemented feature
-5 PAPI_ECLOST Access to the counters was lost or interrupted
-6 PAPI_EBUG Internal error, please send mail to the developers
-7 PAPI_ENOEVNTHardware Event does not exist

-8 PAPI_ECNFLCT
Hardware Event exists, but cannot be counted due to counter resource
limitations

-9 PAPI_ENOTRUNNo Events or EventSets are currently counting

  

Constants

The following constants are defined in the header files, papi.h  and papi.inc . 
  



Value Symbol Description
-1 PAPI_NULL A nonexistent hardware event used as a place holder 
0 PAPI_USER Counts are accumulated for events occurring in the user context
1 PAPI_KERNEL Counts are accumulated for events occurring in the kernel context
2 PAPI_SYSTEM Counts are accumulated for events in all contexts
0 PAPI_PER_THR Counts are accumulated on a per kernel thread basis
1 PAPI_PER_PROC Counts are accumulated on a per process basis
2 PAPI_PER_CPU Counts are accumulated on a per CPU basis
3 PAPI_PER_NODE Counts are accumulated on a per node basis
1 PAPI_RUNNING EventSet is running
2 PAPI_STOPPED EventSet is stopped
0 PAPI_QUIET Option to not do any automatic error reporting to stderr

1 PAPI_VERB_ECONTOption to automatically report any return codes < 0 to stderr

2 PAPI_VERB_ESTOPOption to automatically report any return codes < 0 to stderr  and call
exit(PAPI_ERROR)

1 PAPI_SET_MPXRESOption to enable and set the resolution of the multiplexing software
2 PAPI_GET_MPXRESOption to query the status of the multiplexing software
1000 PAPI_DEF_MPXRESDefault resolution in microseconds of the multiplexing software
3 PAPI_DEBUG Option to turn on debugging features of the PerfAPI  library
4 PAPI_SET_OVRFLOOption to turn on the overflow reporting software
5 PAPI_GET_OVRFLOOption to query the status of the overflow reporting software
1 PAPI_ONESHOT Option to have the overflow handler called once
2 PAPI_RANDOMIZE Option to have the threshold of the overflow handler randomized

16 PAPI_MAX_EVNTS
The maximum number of simultaneous events countable by the platform
specific hardware without multiplexing

123 PAPI_ERROR Exit code for PerfAPI  executables that have PAPI_VERB_ESTOP option set

  

The Low Level API

The following functions represent the low level portion of the PerfAPI. These functions provide greatly
increased efficiency and functionality over the high level API presented in the next section. All of the
following functions are callable from both C and Fortran except where noted. As mentioned in the
introduction, the low level API is only as powerful as the substrate upon which it is built. Thus some
features may not be available on every platform. The converse may also be true, that more advanced
features may be available and defined in the portion of the header file for a particular platform. The user
is encouraged to read platform documentation carefully to determine what features are available. 

int PAPI_set_granularity(int granularity)  



     This function sets the measurement granularity in which the counters function. Here
granularity  is one of the constants, PAPI_PER_THR, PAPI_PER_PROC, PAPI_PER_CPU or
PAPI_PER_NODE as defined in the header file. These constants correspond to their
descriptions in the above table. By default, the granularity is set to the most restrictive
supported by the substrate.

int PAPI_set_context(int context)  

    This function sets the execution context in which events are counted. Here context  is one
of the constants PAPI_USER, PAPI_KERNEL, PAPI_SYSTEM  as defined in the header file.

int PAPI_perror(int code, char *destination, int length)  

    This function copies length  number of characters from the error description string
corresponding to code  into destination.  The resulting string is always null terminated. If
length  is 0, then the string is printed on stderr  instead.

int PAPI_add_event(int *EventSet, int Event)  

     This function sets up a new EventSet or modifies an existing one. To create a new
EventSet, EventSet  must be set to PAPI_NULL. Separate EventSets containing events that
require use of the same hardware may exist, but an EventSet may not be started if a
conflicting EventSet is running. Returns PAPI_ENOEVNT if Event  cannot be counted on this
platform. The addition of a conflicting event to an event set will return an error unless
PAPI_SET_MPXRES has been set. Note: EventSet 0 may not be used; it has been reserved for
internal use.

int PAPI_add_events(int *EventSet, int *Events, int number)  

    Same as above for a vector of events. If one or more of Events  cannot be counted on this
platform, then this call fails and PAPI_ENOEVNT is returned. In addition, the invalid entries in
the Events  array are set to PAPI_NULL such that the user can successfully reissue the call.

int PAPI_add_pevent(int *EventSet, int code, void *inout)  

    This function allocates a new EventSet for a native programmable Event. Such EventSets
can only consist of one event, namely that which is specified in this call. Its semantics are
very similar to that of ioctl()  system call. inout  points to an opaque data structure that is
specific to the value in code . Higher level macros may be provided in the header file. Please
check the documentation for each substrate. This function has a C binding only.

int PAPI_rem_event(int EventSet, int Event)  

    This function removes the hardware counter Event  from EventSet .

int PAPI_rem_events(int EventSet, int *Events, int number)  

    This function performs the same as above except for a vector of hardware Events.



int PAPI_list_events(int EventSet, int *Events, int *number)  

    This function decomposes EventSet  into the hardware Events its contains. number  is both
an input and output parameter.

int PAPI_start(int EventSet)  

    This function starts counting all the hardware Events contained in EventSet . All counts
are implicitly initialized to zero. As mentioned before, separate EventSets containing events
that require use of the same hardware may exist, but may not be started if a conflicting
EventSet is running.

int PAPI_stop(int EventSet, long long *values)  

    This function terminates the counting of all hardware Events contained in EventSet . In
addition, the counters contained in that EventSet are copied into the values  array.

int PAPI_read(int EventSet, long long *values)  

    This function copies the running or stopped counters in EventSet  into the values  array.
Internal counters will not be re-initialized to zero.

int PAPI_accum(int EventSet, long long *values)  

    This function accumulates the running or stopped counters in EventSet  into the values
array. In addition, it initializes the internal counters to zero.

int PAPI_write(int EventSet, long long *values)  

    This function assigns the values contained in values  to the internal counters of the Events
contained in EventSet .

int PAPI_reset(int EventSet)  

    This function initializes the internal counters of the hardware Events contained in
EventSet  to zero.

int PAPI_cleanup(int *EventSet)  

    This function effectively removes EventSet  from existence. The EventSet must be
stopped in order for this call to succeed.

int PAPI_state(int EventSet, int *status)  

    This function returns the state of the entire EventSet in status . If the call succeeds, then
status is either PAPI_RUNNING or PAPI_STOPPED.

int PAPI_set_opt(int option, int value, PAPI_option_t *ptr)  



    This function sets specific options of the PAPI library, its substrate, or specific EventSets.
The PAPI_option_t structure represents a union of all the structures that can be arguments
to the different options. In addition, there may exist machine specific options so please check
the header file and documentation. This function has a C binding only.

The following options are defined: 

PAPI_SET_MPXRES 

    This option sets the multiplexing interval to value . value  represents the time in
microseconds between successive updates of the counting hardware. Values less than 1
millisecond may be rounded to the nearest possible resolution. A value of 0 disables
multiplexing completely. Multiplexing is turned off initally. ptr  should be set to NULL.  

PAPI_DEBUG 

    This option turns on internal error reporting so that when one of PAPI functions returns
an error code, PAPI_perror(code,NULL,0)  is called implicitly before the function returns.
Here value  is one of PAPI_QUIET , PAPI_VERB_ECONT or PAPI_VERB_ESTOP. By default,
this option is set to PAPI_QUIET , do nothing and return the error code to the calling function. 

PAPI_SET_OVRFLO 

    This option enables PAPI to asynchronously deliver notification that the counter for a
hardware Event has exceeded a user defined threshold. Here value  represents the EventSet
in which to enable this option. 

The overflow  member of the PAPI_option_t  union structure contains the following
members: 

void (*handler)(int signal, siginfo_t *si, void *ucontext, int

EventSet, int Event, int count);  

    This function is called much like a signal handler. This is a function that takes
all of the signal handler arguments as defined in the system’s header files, plus
the EventSet, Event causing the overflow, and the current value of the counter
for that hardware Event. 

int count;  

    This is the threshold after which the handler is called. 

int signal;  
  
    This is the signal used to activate the handler. The signal chosen often has side
effects on the kind of information available in the siginfo_t structure. Please
check your system header file and man pages carefully. 



int flag;  

    This value tells how the overflow mechanism is to be used. The following
options may not be mutually exclusive depending on their semantics. 

PAPI_ONESHOT 

    This flag indicates that the library should not reinstall the overflow
handler when an overflow is generated. By default this feature is
disabled and the handler is called upon every detected overflow. 

PAPI_RANDOMIZE 

    This flag indicates that the library should randomly choose a new
overflow interval with maximum value of count  after the handler is
called for the first time. By default this feature is disabled.

int PAPI_get_opt(int option, int *value, PAPI_option_t *ptr)  

    This function queries the status of tunable options in the PAPI library. value  is an
input/output parameter. The ptr  structure is solely for output. Not all options fill the
PAPI_option_t structure. This function has a C binding only. 

The following options are defined: 

PAPI_GET_MPXRES 

    This option returns the current multiplexing interval in microseconds in value . An
interval of 0 means that multiplexing is not enabled. 

PAPI_GET_OVRFLO 

    This option fills the overflow  member of the PAPI_option_t  union structure as defined
above. value  is an input parameter defined as the EventSet to query.

The High Level API

The simple interface implemented by the following three routines allows the user to access and count
specific hardware events from both C and Fortran. It should be noted that this API can be used in
conjunction with the low level API. However, even if counter multiplexing is enabled by the user, the
high level API is still only able to access those events countable simultaneously by the underlying
hardware. 

int PAPI_start_counters(int *events, int array_len)  

    Start counting the events named in the events  array. This function implicitly stops and initializes any
counters running as the result of a previous call to PAPI_start_counters().  It is the user’s
responsibility to choose events that can be counted simultaneously by reading the vendor’s



documentation. 

int PAPI_read_counters(long long *values, int array_len)  

    Read the running counters into the values  array. This call implicitly initializes the internal counters
to zero and lets them continue to run upon return. 

int PAPI_stop_counters(long long *values, int array_len)  

    Stop the running counters and copy the counts into the values  array. 
  

Examples

Example 1: Pseudo code for a program that measures the cycles, floating point instructions and
L1 data

cache misses for the whole program and one segment of code.

#include "papi.h"  

main()  
{  
    int EventSet = PAPI_NULL;  
    long long first[2] = {0, 0}, total[2] = {0, 0};  

    PAPI_add_event(&EventSet, PAPI_L1_DCM);  
    PAPI_add_event(&EventSet, PAPI_FP_INS);  
    PAPI_add_event(&EventSet, PAPI_TOT_CYC);  

    PAPI_start(EventSet);  

    /* Do something that’s really slow; */  

    PAPI_accum(EventSet, first);  

    /* Do something else even slower; */  

    PAPI_stop(EventSet, total);  
    PAPI_cleanup(&EventSet);  
}  

Example 2: Pseudo code for a program that generates a histogram of where overflows occur for
L1 cache misses.

#include <signal.h>  
#include "papi.h"  



void handler(int signal, siginfo_t *si, void *ucontext, int EventSet, int Event, int

count)  
{  
    /* Get text address from si->xxxx;  
    Get thread context from ucontext;  
    Hash text address for our context into hash bucket;  
    Add count for Events to our hash bucket; */  

    return;  
}  

main()  
{  
    int L1_Cache_Misses = PAPI_NULL;  
    PAPI_option_t options = { 0, };  
    long long total[2] = { 0, 0 };  

    PAPI_add_event(&L1_Cache_Misses, PAPI_L1_DCM);  
    PAPI_add_event(&L1_Cache_Misses, PAPI_L1_ICM);  

    options.overflow.handler = handler;  
    options.overflow.count = 10001;  
    options.oveflow.signal = SIGPROF;  
    options.oveflow.flag = 0x0;  

    PAPI_set_opt(PAPI_SET_OVRFLO, L1_Cache_Misses, &options);  

    PAPI_start(EventSet);  

    /* do_something; */  

    PAPI_stop(EventSet, total);  
    PAPI_cleanup(EventSet);  

    /* decode hash table’s addresses into source lines;  
    print histogram of lines vs. overflows; */  

    exit(0);  
}  

Implementation Status

Reference implementations are currently underway for the SGI MIPS R10000, IBM Power, and Linux
platforms, and are expected to be completed by April 1999. For current information see the PAPI home
page. 


